
Signal processing with the MAXQ
multiply-accumulate unit (MAC)
Traditional microcontrollers and digital signal processors (DSPs) are sometimes viewed as standing
at opposite ends of the microcomputer spectrum. While microcontrollers are best suited for control
applications that require low-latency response to unsynchronized events, DSPs shine in applications
where intense mathematical calculations are required. A microcontroller can be used in heavy
arithmetic applications, but the one-operation-at-a-time nature of most microcontroller ALUs makes
such use less than optimal. Similarly, a DSP can be forced into a control application, but the internal
architecture of most DSPs render this operation inefficient in both code and time.

Choosing a DSP or a traditional microcontroller becomes more difficult when a mostly control-
oriented application requires a small amount of signal processing. In such applications, it is tempting
to squeeze the DSP code into the microcontroller. However, the designer often finds that the
application spends most time performing DSP functions, thus making the control application suffer.

This dichotomy can be resolved in modern processor architectures, such as the MAXQ
architecture. In the modular MAXQ architecture, a multiply-accumulate unit (MAC) can be
added to the design and integrated into the architecture with ease. With the hardware MAC,
16 x 16 multiply-accumulate operations occur in one cycle without compromising the
application running on the control processor. This article provides some examples of how the
MAC module in a typical MAXQ microcontroller can be used to solve such real-world problems.

Using the MAC module with a MAXQ

A common application for DSPs is filtering some analog signal. In this application, a properly
conditioned analog signal is presented to an ADC, and the resulting stream of samples is filtered in
the digital domain. A general filter implementation can be realized by the following equation:

y[n] = ∑bix[n-i] + ∑aiy[n-i]

where bi and ai characterize the feedforward and feedback response of the system, respectively.

Depending on the values of ai and bi, digital filters can be classified into two broad categories:
finite impulse response (FIR) and infinite impulse response (IIR). When a system does not
contain any feedback elements (all ai = 0), the filter is said to be of the FIR type:

y[n] = ∑bix[n-i]

However, when elements of both ai and bi are non-zero, the system is an IIR filter.

As can be seen from the above equation for an FIR filter, the main mathematical operation is to
multiply each input sample by a constant, and then accumulate each of the products over the n
values. The following C fragment illustrates this:

y[n]=0;

for(i=0; i<n; i++)

y[n] += x[i] * b[i];

For a microprocessor with a multiplier unit, this can be achieved according to the following
pseudo-assembler code:

move ptr0, #x ;Primary data pointer -> samples

move ptr1, #b ;Secondary DP -> coefficients

move ctr, #n ;Loop counter gets number of samples

move result, #0 ;Clear result register

In the modular MAXQ
architecture, a single-
cycle multiply-
accumulate (MAC) unit is
incorporated to facilitate
operation required for a
typical signal-processing
technique.

16

17

ACC_LOOP:

move acc, @ptr0 ;Get a sample

mul @ptr1 ;Multiply by coefficient

add result ;Add to previous result

move result, acc ;...and save the result back

inc ptr0 ;Point to next sample

inc ptr1 ;Point to next coefficient

dec ctr ;Decrement loop counter

jump nz, ACC_LOOP ;Jump if there are more samples

end

Thus, even with a multiplier, the multiply and accumulate loop requires 12 instructions and
(assuming a one-cycle execution unit and multiplier) 4 + 8n cycles.

The MAXQ multiplier is a true multiply-accumulate unit. Performing the same operation in the
MAXQ architecture shrinks code space from 12 words to 9 words, and execution time is reduced
to 4 + 5n cycles.

move DP[0], #x ; DP[0] -> x[0]

move DP[1], #b ; DP[1] -> b[0]

move LC[0], #loop_cnt ; LC[0] -> number of samples

move MCNT, #INIT_MAC ; Initialize MAC unit

MAC_LOOP:

move DP[0], DP[0] ; Activate DP[0]

move MA, @DP[0]++ ; Get sample into MAC

move DP[1], DP[1] ; Activate DP[1]

move MB, @DP[1]++ ; Get coeff into MAC and multiply

djnz LC[0], MAC_LOOP

Note that in the MAXQ multiply-accumulate unit, the requested operation occurs automatically
when the second operand is loaded into the unit. The result is stored in the MC register. Note
also that the MC register is 40 bits long, and thus can accumulate a large number of 32-bit
multiply results before overflow. This improves on the traditional approach where overflow
must be tested after every atomic operation. To illustrate how the MAC can be used efficiently
in the signal-processing flow, we present a simple application for a dual-tone multi-frequency
(DTMF) transceiver.

DTMF overview

DTMF is a signaling technique used in the telephone network to convey address information
from a network terminal (a telephone or other device) to a switch. The mechanism uses two sets
of four discrete tones that are not harmonically related, i.e., the “low group” (less than 1kHz) and
the “high group” (greater than 1kHz). Each digit on the telephone keypad is represented by
exactly one tone from the low group and one tone from the high group. See Figure 1 to learn
how the tones are allocated.

DTMF tone encoder

The encoder portion of the DTMF transceiver is relatively straightforward. Two digital sine-
wave oscillators are required, each of which can be tuned to one of the four low-group or high-
group frequencies.

There are several ways to resolve the issue of digitally synthesizing a sine wave. One method of
sine-wave generation avoids the issue of digital synthesis altogether. Instead, it just strongly filters
a square wave produced on a port pin. While this method works in many applications, Bellcore
requirements dictate that the spectral purity of the sine waves be higher than can be achieved using
this technique.

The dual-tone multi-
frequency (DTMF)
signaling technique used
in the telephone
network conveys
address information
from a network terminal
(telephone or other
device) to a switch.

...in the MAXQ multiply-
accumulate unit, the
requested operation
occurs automatically
when the second
operand is loaded into
the unit.

18

A second method of generating sinusoidal waveforms is the table-lookup
method. In this method, one-quarter of a sine wave is stored in a ROM table, and
the table is sampled at a precomputed interval to create the desired waveform.
Creating a quarter-sine table of sufficiently high resolution to meet spectral
requirements would, however, require a significant amount of storage.
Fortunately, there is a better way.

A recursive digital resonator1 can be used to generate the sinusoids (Figure 2).
The resonator is implemented as a two-pole filter described by the following
difference equation:

Xn = k * Xn-1 – Xn-2

where k is a constant defined as

k = 2 cos(2π * toneFrequency / samplingRate)

Because only a small number of tones are needed in a DTMF dialer,
the eight values of k can be precomputed and stored in ROM. For
example, the constant required to produce a Column 1 tone (770Hz) at
a sample rate of 8kHz is:

k = 2 cos(2π * 770 / 8000) = 2 cos(0.60) = 1.65

One more value must be calculated: the initial impulse required to make the
oscillator begin running. Clearly, if Xn-1 and Xn-2 are both zero, every
succeeding Xn will be zero. To start the oscillator, set Xn-1 to zero and set
Xn-2 to

Xn-2 = -A * sin(2π * toneFrequency / samplingRate)

In our example, assuming a unit sine wave is desired, this reduces to:

Xn-2 = -1 * sin(2π * 770 / 8000) = -sin(0.60) = -0.57

Reducing this to code is simple: first, two intermediate variables (X1, X2) are
initialized. X1 is initialized to zero, while X2 is loaded with the initial
excitation value (calculated above) to start the oscillation. To generate one
sample of the sinusoid, perform the following operation:

X0 = k * X1 – X2
X2 = X1
X1 = X0

Each new sine value is calculated using one multiplication and one subtraction. With a single-cycle
hardware MAC on the MAXQ microcontroller, the sine wave can be generated as follows:

move DP[0], #X1 ; DP[0] -> X1

move MCNT, #INIT_MAC ; Initialize MAC unit

move MA, #k ; MA = k

move MB, @DP[0]++ ; MB = X1, MC=k*X1, point to X2

move MA, #-1 ; MA = -1

move MB, @DP[0]-- ; MB = X2, MC=k*X1-X2, point to X1

nop ; wait for result

move @--DP[0], MC ; Store result at X0

The MAXQ microcon-
troller, together with its
MAC unit, is bridging
the gap between the
traditional microcon-
troller and the digital
signal processor.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209Hz 1633Hz1477Hz1336Hz

697Hz

770Hz

852Hz

941Hz

HIGH-FREQUENCY GROUP
LO

W
-F

RE
QU

EN
CY

 G
RO

UP

SINE WAVE - 770Hz

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x10-3

Figure 1. Combining one
frequency from the high-
frequency group and one
from the low-frequency
group generates a DTMF
signal.

Figure 2. A recursive
resonator generates the
sine wave.

19

DTMF tone detection

Because only a small number of frequencies are to be detected, the modified
Goertzel algorithm2 is used. This algorithm is more efficient than the general
DFT mechanisms and provides reliable detection of inband signals. It can be
implemented as a simple second-order filter following the format in Figure 3.

To use the Goertzel algorithm to detect a tone of a particular frequency, a
constant must first be precomputed. For a DTMF detector, this can be done at
compile time. All the tone frequencies are well specified. The constant is
computed from the following formula:

k = toneFrequency / samplingRate
a1 = 2cos(2πk)

First, three intermediate variables (D0, D1, and D2) are initialized to zero. Now,
for each sample X received, perform the following:

D0 = X + a1 * D1 – D2
D2 = D1
D1 = D0

After a sufficient number of samples has been received (usually 205 if the
sample rate is 8kHz), compute the following using the latest computed values
of D1 and D2:

P = D12 + D22 - a1 * D1 * D2

P now contains a measure of the squared power of the test frequency in the input
signal. To decode full four-column DTMF, each sample will be processed by
eight filters. Each filter will have its own k value, and its own set of intermediate
variables. Since each variable is 16 bits, the entire algorithm will require 48
bytes of intermediate storage.

Once the P values for various tone frequencies are calculated, one tone in the
high and low groups will have values significantly higher than all the other
tones, which means more than twice as high, often more than an order of
magnitude. Figure 4 shows a sample input signal to the decoder, and Figure 5
illustrates the result of the Goertzel algorithm. If the signal spectrum does not
meet this criterion, it either means that no DTMF energy is present in the signal,
or that there is sufficient noise to block the signal.

A spreadsheet that demonstrates this algorithm is available on our website, as
well as sample code for the MAC-equipped MAXQ processor. Go to
www.maxim-ic.com/MAXQ_DTMF.

Conclusion

The MAXQ microcontroller, together with its MAC, is bridging the gap between
the traditional microcontroller and the digital signal processor. With the addition of
a hardware MAC, the MAXQ microcontroller offers a new level of signal-
processing capability to the 16-bit microcontroller market not previously available.
Real-time signal processing is made possible with a single-cycle MAC that
provides the functions most often required in real-world applications.

1 Todd Hodes, John Hauser, Adrian Freed, John Wawrzynek, and David Wessel. Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-99, March 15–19, 1999), pp. 993–996.
2 Alan Oppenheim and Ronald Schafer, Discrete-Time Signal Processing. Prentice Hall.

z -1

z -1

-1

-e-j2
k/N

a
1

X PD0

D2

D1

+ +

SAMPLE INPUT WAVEFORM - 852Hz AND 1336Hz

100

50

0

-50

-100

0 20 40 60 80 100 120 140 160 180 200

Figure 3. The Goertzel
algorithm is implemented
as a second-order filter.

MAGNITUDE OF DETECTED FREQUENCY
7000

6000

5000

4000

3000

2000

1000

0
697 770 852 941 1209

FREQUENCY

1336 1477 1633

Figure 4. This is the
sample input waveform for
the DTMF decoder.

Figure 5. The DTMF
decoder detects the
magnitude of various
frequencies.

